

Research Articles: Behavioral/Cognitive**Anterior cingulate cortex and ventral hippocampal inputs to the basolateral amygdala selectively control generalized fear**

Samantha Ortiz^{1,2}, Maeson S. Latsko^{1,2}, Julia L. Fouty¹, Sohini Dutta^{1,2}, Jordan M. Adkins^{1,2} and Aaron M. Jasnow^{1,2}

¹*Department of Psychological Sciences*

²*Brain Health Research Institute, Kent State University, Kent OH 44242*

<https://doi.org/10.1523/JNEUROSCI.0810-19.2019>

Received: 10 April 2019

Revised: 15 May 2019

Accepted: 5 June 2019

Published: 17 June 2019

Author contributions: S.O. and A.M.J. designed research; S.O., M.L., J.F., S.D., and J.M.A. performed research; S.O. analyzed data; S.O. and A.M.J. wrote the first draft of the paper; S.O., M.L., and A.M.J. edited the paper; S.O. and A.M.J. wrote the paper.

Conflict of Interest: The authors declare no competing financial interests.

We acknowledge the intellectual contributions of Dr. David Riccio and Dr. John Johnson. We also acknowledge the research assistance of Courtney Costanzo and Jasmin Beaver in the data collection. We also acknowledge the contributions of the animal care staff in the Department of Psychological Sciences.

Corresponding author: Aaron M. Jasnow, Corresponding author email: ajasnow@kent.edu

Cite as: J. Neurosci 2019; 10.1523/JNEUROSCI.0810-19.2019

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

1 Title Page
2 **Anterior cingulate cortex and ventral hippocampal inputs to the basolateral**
3 **amygdala selectively control generalized fear**
4 Samantha Ortiz^{1,2}, Maeson S. Latsko^{1,2}, Julia L. Fouty¹, Sohini Dutta^{1,2}, Jordan M.
5 Adkins^{1,2}, Aaron M. Jasnow^{1,2}
6 ¹Department of Psychological Sciences and ²Brain Health Research Institute, Kent
7 State University, Kent OH 44242
8 **Abbreviated Title:** ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION
9
10 Corresponding author: Aaron M. Jasnow
11 Corresponding author email: ajasnow@kent.edu
12
13 **Number of Figures: 6**
14 **Number of Tables: 6**
15
16 **Abstract Word Count:** 226/250
17 **Introduction Word Count:** 650/650
18 **Discussion Word Count:** 1455/1500
19 The authors have no conflicts of interest to declare.
20 **Acknowledgements**
21 We acknowledge the intellectual contributions of Dr. David Riccio and Dr. John
22 Johnson. We also acknowledge the research assistance of Courtney Costanzo and
23 Jasmin Beaver in the data collection. We also acknowledge the contributions of the
24 animal care staff in the Department of Psychological Sciences.
25

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

26 **Abstract**

27 A common symptom of anxiety disorders is the over generalization of fear across a
28 broad range of contextual cues. We previously found that the anterior cingulate cortex
29 and ventral hippocampus (vHPC) regulate generalized fear. Here, we investigate the
30 functional projections from the ACC and vHPC to the amygdala and their role in
31 governing generalized fear in a preclinical rodent model. A chemogenetic approach
32 (DREADDs) was used to inhibit glutamatergic projections from the ACC or vHPC that
33 terminate within the basolateral amygdala (BLA) at recent (1 day) or remote (28 days)
34 time points after contextually fear conditioning male mice. Inactivating ACC or vHPC
35 projections to the BLA significantly reduced generalized fear to a novel, nonthreatening
36 context but had no effect on fear to the training context. Further, our data indicate that
37 the ACC-BLA circuit supports generalization in a time-independent manner. We also
38 identified for the first time a strictly time-dependent role of the vHPC-BLA circuit in
39 supporting remote generalized contextual fear. Dysfunctional signaling to the amygdala
40 from the ACC or the hippocampus could underlie over-generalized fear responses that
41 are associated with anxiety disorders. Our findings demonstrate that the ACC and
42 vHPC regulate fear expressed in novel, nonthreatening environments via projections to
43 the BLA but do so as a result of training intensity or time, respectively.

44

45

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

46 **Significance Statement**

47 Anxiety disorders are characterized by a common symptom that promotes
48 overgeneralization of fear in non-threatening environments. Dysregulation of the
49 amygdala, anterior cingulate cortex (ACC), or hippocampus (HPC) has been
50 hypothesized to contribute to increased fear associated with anxiety disorders. Our
51 findings show that the ACC and HPC projections to the basolateral amygdala (BLA)
52 regulate generalized fear in non-threatening, environments. However, descending ACC
53 projections control fear generalization independent of time, whereas HPC projections
54 play a strictly time-dependent role in regulating generalized fear. Thus, dysfunctional
55 ACC/HPC signaling to the BLA may be a predominant underlying mechanism of non-
56 specific fear associated with anxiety disorders. Our data have important implications for
57 predictions made by theories about aging memories and interactions between the
58 hippocampus and cortical regions.

59 **Introduction**

60 Exposure to stressful events can precipitate anxiety disorders, which can afflict
61 10-30% of individuals worldwide (Alonso et al., 2004; Kessler et al., 2012). A
62 debilitating symptom of many anxiety disorders is the overgeneralization of fear
63 (Dymond et al., 2015; Morey et al., 2015), manifesting as hyperarousal across a range
64 of contexts that are not associated with any aversive event (Lissek et al., 2005; 2010).
65 Moreover, people with anxiety disorders have hyperreactive amygdalae (Shin et al.,
66 2004; 2006) along with decreased anterior cingulate cortex (ACC) (Yamasue et al.,
67 2003; Woodward et al., 2006; Asami et al., 2008; Greenberg et al., 2013) and
68 hippocampal volumes (Gurvits et al., 1996; Shin et al., 2006; Chen and Etkin, 2013).

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

69 Although these regions are associated with anxiety disorders, there is no evidence
70 demonstrating how these brain areas interact to support over-generalization of fear,
71 leading to the maintenance of anxiety symptomology. In this study, we explore
72 generalized fear – fear occurring in non-threatening contexts – using a preclinical rodent
73 model to identify if glutamatergic projections from the ACC and/or hippocampus to the
74 amygdala regulate generalized fear.

75 Rodent models of context fear learning have been used for decades to study the
76 underlying mechanisms of fear generalization (Jasnow et al., 2012; 2016; Asok et al.,
77 2018). Twenty-four hours after training mice to fear a context with specific cues, if
78 placed back in the training context, mice display high levels of freezing – a fundamental
79 rodent fear response. If mice are instead placed in a novel context that is different from
80 the training context, they display low levels of freezing, indicating little fear to the novel
81 context. As the time interval between training and testing increases, mice freeze in the
82 novel context at similar levels to those in the training context, generalizing fear to the
83 novel, non-threatening context.

84 Time-dependent generalized fear is thought to rely on cortical regions (Frankland
85 et al., 2004b; Einarsson et al., 2015), independent of the hippocampus whereas fear
86 responses to specific contexts – *specific fear* – are reliant on the hippocampus (Zola-
87 Morgan and Squire, 1990; Frankland et al., 1998; 2004a; Teyler and Rudy, 2007;
88 Winocur et al., 2007; Wiltgen et al., 2010). We previously identified that generalized
89 fear is simultaneously dependent on the ACC and the ventral hippocampus (vHPC);
90 inactivation of either region reduced fear in a novel, non-threatening context, but left
91 fear to the training context unaltered (Cullen et al., 2015).

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

92 Although the ACC and hippocampus are implicated in anxiety disorders (see
93 above citations) and generalized fear (Einarsson and Nader, 2012; Cullen et al., 2015;
94 Zhou et al., 2017), little is known about the circuits through which they govern
95 generalized fear responses. A single study found that circuits connecting the ACC and
96 vHPC in the nucleus reunions are necessary for the learning of specific fear (Xu and
97 Südhof, 2013) – inactivating these circuits prior to training induces rapid fear
98 generalization. However, how the ACC and vHPC outputs govern temporally graded
99 generalized fear during recall is completely unknown. The ACC and vHPC each
100 communicate with the basolateral amygdala (BLA) (Maren and Fanselow, 1995;
101 Cenquizca and Swanson, 2007; Morozov et al., 2011) – a critical region for fear
102 acquisition and expression (Kim and Fanselow, 1992; Kim et al., 1993; Campeau and
103 Davis, 1995; Maren et al., 1996; Schafe et al., 2005; Do-Monte et al., 2016). Thus, we
104 hypothesize that ACC and vHPC projections converge within the BLA to regulate time-
105 dependent contextual generalization of fear.

106 To identify if ACC and vHPC projections to the BLA regulate generalized fear, we
107 used DREADDs (Armbruster et al., 2007), to selectively express the modified human
108 muscarinic acetylcholine receptor 4 (hM4D) within the ACC or vHPC. We found new
109 evidence that inactivation of ACC or vHPC projections in the BLA dramatically
110 attenuated generalized fear in time-independent and time-dependent processes,
111 respectively; specific fear was unaltered. Our findings suggest that over-generalization
112 of fear in people with anxiety disorders may result from hyperreactive amygdalae due to
113 dysfunctional signaling from the ACC or hippocampus.

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

114 **Materials and Methods**

115 **Subjects**

116 Experiments 1 (Fig. 1B), 2 (Fig. 1C-G), 3 (Fig. 2), 5 (Fig. 4), and 6 (Fig. 5) used
117 224 C57BL/6J male mice. Experiments 4 (Fig 3) and 7 (Fig 6) used 87 F1 male hybrids
118 generated from crossing C57BL/6 males and 129S1SvlmJ females (Jackson
119 Laboratory). All mice were generated from a breeding colony in the Department of
120 Psychological Sciences at Kent State University. Mice were five to seven weeks of age
121 before they were used for experimentation and were group housed (2-5 mice per cage)
122 with free access to food and water in a room maintained on a 12:12 light/dark cycle. All
123 procedures were conducted in a facility accredited by the AALAC, in accordance with
124 the NIH guidelines, and with approval by Kent State University IACUC guidelines.

125 **Surgical Procedures**

126 Mice were anesthetized with a subcutaneous injection of a Ketamine (75 mg/kg)
127 + Xylazine (10 mg/kg) + Acepromazine (2 mg/kg) cocktail. Following administration of
128 anesthesia, mice were mounted on a stereotaxic apparatus (David Kopf Instruments,
129 Tujunga, CA). The scalp of each mouse was retracted; the skull was adjusted so that
130 bregma and lambda were on the same horizontal plane (within .05mm of each other).
131 Two 0.33 gauge infusion needles were guided to the appropriate coordinates relative to
132 bregma and small bilateral burr holes were drilled. Coordinates for the following brain
133 regions were ACC: .08 mm AP, \pm .07 mm ML, -3.6 mm DV from bregma at a 14° angle;
134 vHPC: -3.2 mm AP, \pm 3.3 mm ML, -4.25 mm DV from bregma. AAV8-CaMKIIa-
135 hM4D(Gi)-mCherry virus (hM4D) (Addgene) or a control virus under the same promoter,
136 AAV8-CamKII α -EGFP (EGFP) (Addgene) was bilaterally infused at 0.1 μ L/minute to a

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

137 total infusion volume of 0.25 μ L and the needle was left in place for five minutes after
138 completion of the infusion. Upon completion of the virus infusion, the anesthesia was
139 reversed with a subcutaneous injection of atipamezole (0.5 mg/kg).

140 All behavioral testing was completed seven weeks after viral infusions in order to
141 control for transgene expression (see Fig 1C,D for example). The interval between viral
142 infusion and cannulation differed between experimental procedures in order to maintain
143 a consistent interval between virus infusions and testing and control for the influence of
144 surgery on training. Cannulations for the BLA were completed one week prior to
145 behavioral training procedures, controlling for recovery time between the final surgery
146 and the start of behavioral training. Mice were anesthetized and mounted on a
147 stereotaxic apparatus with the same surgical procedures as described above. Two
148 guide cannulae (Plastics One, Roanoke, VA) were surgically implanted bilaterally above
149 the basolateral amygdala (-1.6 mm AP, \pm 3.4 mm ML, -4.9 mm DV from bregma).

150 Dummy cannulae were inserted into the guide cannulae after surgery. For viral spread
151 analysis and drug targeting for each experiment see figures: 1E,F, and H, 2D-E, 3D-E,
152 4D, 5D-E, 6A-B.

153 **Fear Conditioning**

154 Fear conditioning was performed in four identical conditioning chambers (7" W x
155 7" D x 12"H) containing two Plexiglas walls, two aluminum sidewalls, and a stainless-
156 steel grid-shock floor (Coulbourn Instruments, Allentown, PA). The training context
157 consisted of the conditioning chamber with a polka-dot insert attached to the rear
158 Plexiglas wall, continuous white noise (70dB), dim illumination, and the stainless-steel
159 grid floors were cleaned with 70% ethanol. The novel context consisted of the

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

160 conditioning chamber with no visible illumination (illuminated only with an infrared light),
161 fan (providing continuous presentation of 60dB white noise), and flat brown Plexiglas
162 floors which were cleaned with 2% Quatricide.

163 Mice were pre-exposed to the context twice for five minutes on the two days prior
164 to fear conditioning. Fear conditioning occurred in the training context with five
165 unsignaled footshocks (1s, 1.0 mA), each separated by 90s. Mice were removed from
166 the apparatus 30s after the last shock and returned to their home cage. Mice were
167 tested for fear using a 5-minute exposure in either the training context or the novel
168 context at 24 hours or 28 days after training.

169 For the CNO control experiments, mice were given 5mg/kg intraperitoneal (IP)
170 injections of clozapine-n-oxide (CNO) (Cayman Chemical) or saline 30 minutes prior to
171 testing; these mice did not receive any virus. All mice were given CNO 30 minutes prior
172 to testing in the systemic inactivation studies. Thus, the mice only varied in their
173 transgene expression (e.g., EGFP or hM4D). The dose of 5mg/kg was selected due to
174 common IP injection doses used for DREADD experiments and has shown to have
175 reduced effects on behavior in naïve mice (MacLaren et al., 2016; Jendryka et al.,
176 2019). In experiments in which mice were given a localized infusion of CNO (0.2 μ L of
177 650 μ M at 0.1 μ L/min), a concentration within the range of those previously reported
178 (Mahler et al., 2014; Vazey and Aston-Jones, 2014; Scofield et al., 2015), the drug was
179 infused five minutes prior to testing in order to inactivate ACC or vHPC projections
180 terminating in the basolateral amygdala. The within-subject fear testing used F1 hybrids
181 in the same training procedures as described previously with counterbalanced testing.
182 F1 hybrids were tested in both the training and novel contexts for five minutes with 72-

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

183 hours between testing. Five minutes prior to each test, F1 hybrids were given intra-BLA
184 infusions of CNO as previously described.

185 **Histology**

186 Mice were deeply anaesthetized with pentobarbital sodium and perfused
187 transcardially with 0.9% saline followed by 4% paraformaldehyde. After perfusion,
188 0.2 μ L of 0.5% neutral red solution was infused into the guide cannulae for site
189 verification of BLA targets then the brains were extracted. After extraction, brains were
190 post-fixed in 4% paraformaldehyde for 24-hours then transferred to 30% sucrose
191 solution until sectioning. Coronal sections (40 μ m thick, taken every 120 μ m) were cut on
192 a freezing microtome, mounted on glass microscope slide, and cover slipped with
193 MOWIOL mounting medium containing 2.5% DABCO before visualization. All imaging
194 was completed on a Nikon Eclipse Ti-S using a Nikon Intensilight C-HGFIE mercury
195 lamp in conjunction with FITC, and Cy3 filters and analyzed using NIS Elements
196 Software. Exclusion criteria for experiments include: unilateral expression of hM4D
197 within the ACC or vHPC or no expression within the vCA1 of the hippocampus. One
198 mouse was excluded due to hM4D cell body expression that significantly exceeded the
199 boundaries of the ACC into the motor cortex. No expression outside of the vHPC was
200 observed.

201 **Statistical Analyses**

202 Mean freezing during contextual fear testing were analyzed using a 2x2 factorial
203 analysis of variance (ANOVA) on Prism Graphpad statistical software. Statistically
204 significant ANOVAs were followed up with Tukey HSD post hoc comparisons. BLA
205 target comparisons were analyzed using a non-parametric Mann-Whitney t-test on

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

206 Prism Graphpad. Effect sizes were calculated for completed experiments along with
207 post-hoc power analyses using G*Power 3. Refer to **Tables 1-6** for detailed statistical
208 results for each experiment.

209 **Results**

210 **Clozapine-n-oxide administration alone has no effect on context fear
211 generalization**

212 Prior to the start of neuronal manipulation with the DREADD system, we tested
213 for non-constitutive effects of CNO on fear generalization. Non-virus-infused mice were
214 context fear conditioned and tested in the training context or a distinct novel context
215 where they had not been previously exposed (Fig. 1A) either one or 28 days after
216 training; 30 minutes prior to testing mice were administered CNO or saline. CNO and
217 saline controls displayed high levels of freezing to the training context and significantly
218 lower freezing levels in the novel context at the recent time point indicating no effect of
219 CNO on normal freezing in either context (main effect of context $F(1,12) = 96.4$, $p <$
220 0.001); Tables 1, 2; Fig. 1B). Furthermore, CNO had no effect on freezing at the remote
221 test; all mice displayed high freezing levels in the training and novel context (Table 1;
222 Fig. 1B). These data indicate that CNO alone, or its potential reverse metabolism to
223 clozapine (Gomez et al., 2017), has no effect on freezing to a specific or generalized
224 context. Thus, any effects observed on fear generalization in the following experiments
225 are due to hM4D receptor inactivation in the targeted region.

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

226 **The anterior cingulate cortex – basolateral amygdala circuit controls time-
227 independent generalized fear**

228 Our initial finding that the ACC plays a critical role in the generalization of context
229 fear (Cullen et al., 2015) was upheld using hM4D inactivation. hM4D-mediated
230 inactivation of the ACC with a systemic injection of CNO eliminated generalized fear to
231 the novel context, but not specific fear to the training context (remote context x
232 treatment interaction $F(1,17) = 4.64$, $p < 0.001$; Tables 3 and 4; Fig. 1G). Therefore, we
233 used the hM4D system with intracranial infusions of CNO to identify the precise ACC
234 circuit that regulates fear generalization. The ACC is known to convey sensory
235 information to the BLA (Morozov et al., 2011; McCullough et al., 2016); therefore, we
236 targeted ACC projection terminals in the BLA.

237 Mice with hM4D or EGFP virus in the ACC were context fear conditioned; five
238 minutes prior to testing all mice were administered intracranial infusions of CNO via
239 guide cannulae into the BLA (Fig 2A-C). Inactivation of the hM4D-expressing terminals
240 from the ACC in the BLA did not affect freezing in the training or novel context during
241 the recent test, both hM4D and EGFP groups displayed high freezing in the training
242 context and low freezing in the novel context (main effect of context $F(1,27) = 47.10$, $p <$
243 0.001 ; Tables 3 and 4; Fig 2F, left panel). However, inactivating ACC terminals in the
244 BLA significantly reduced freezing only in the novel context 28 days after training
245 (context x treatment interaction $F(1,35) = 6.71$, $p = 0.014$; Tables 3 and 4; Fig. 2F, right
246 panel), whereas EGFP mice displayed equivalent freezing in the training and novel
247 contexts – indicating generalized fear. The reduction of fear generalization in hM4D
248 mice was specific to terminal inactivation within the BLA; hM4D mice with extra-BLA

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

249 infusions froze significantly more in the novel context than those with intra-BLA
250 infusions while using a Mann-Whitney non-parametric t-test ($p = 0.019$; Table 3; Fig.
251 2G). Thus, we established that projections from the ACC to the BLA are critical for
252 promoting generalized fear at remote testing points.

253 Are the ACC projections to the BLA that support generalized fear restricted solely
254 to remote tests? If generalization occurs rapidly, does the ACC-BLA circuit still control
255 generalization? Based on our previous findings (Cullen et al., 2015) and the
256 experiments above, we predicted that ACC projections to the BLA would only support
257 generalized fear that develops over time. In the third experiment we used the F1
258 hybrids of C57BL/6J crossed with 129S1/SvImJ – a hybrid mouse line used by several
259 laboratories to study mechanisms of contextual fear (Frankland et al., 2004b; Smith et
260 al., 2007; Wiltgen and Silva, 2007; Wiltgen et al., 2010; Tanaka et al., 2014) due to their
261 rapid learning and high reliability in fear learning. This gave us the advantage of
262 ensuring that our experimental results were not restricted to C57BL/6J mice, as there is
263 considerable variability in learning and behavior across mouse lines (Hefner et al.,
264 2008). We first performed behavioral parametrics with the F1 hybrid line and found a
265 significant effect of number of shocks on the timing of generalization (context x shock
266 interaction $F(1,19) = 5.42$, $p = 0.03$; Table 1; Fig. 3A). Hybrid mice displayed high levels
267 of freezing in the novel context one day after training if the mice received five
268 footshocks, yet this was not observed if the mice received only three footshocks (Table
269 1; Fig. 3A); thus, providing a novel opportunity to study the role of the ACC-BLA-vHPC
270 circuit in non-temporally graded generalization.

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

271 Experimental procedures were carried out as described in experiment two;
272 however, mice were tested a second time 72-hours after the first test in the opposite
273 context to reduce potential testing-order effects and allow for CNO to be completely
274 metabolized before the second test (Fig. 3B and C). Hybrid mice with EGFP virus
275 displayed increased freezing in the novel context during recent and remote tests (Fig
276 3F, left panel). Unexpectedly, hM4D inactivation of the projections from the ACC to the
277 BLA at both the recent (context x treatment interaction $F(1, 10) = 5.35, p = 0.043$) and
278 remote (context x treatment interaction $F(1,13) = 4.93, p = 0.045$) tests reduced freezing
279 in the novel context but not in the training context (Table 3 and 4; Fig. 3F), indicating
280 that projections from the ACC to the BLA promote freezing to a novel context in a time-
281 independent manner. The ACC-BLA pathway controls generalized fear to the novel
282 context but not specific fear to the training context; this effect is upheld across mouse
283 strains and experimental testing designs.

284 **The ventral hippocampus - basolateral amygdala circuit coordinates time-
285 dependent generalized fear**

286 In addition to identifying the ACC as a critical locus supporting generalized
287 contextual fear, we previously identified that the vCA1 of the hippocampus also
288 underlies generalized contextual fear at remote time points (Cullen et al., 2015). This
289 finding was replicated by using hM4D to inactivate the vHPC. Inactivation of the vHPC
290 with a systemic injection of CNO significantly reduced generalized fear to the novel
291 context but not specific fear to the training context at a remote time point (remote
292 context x treatment interaction $F(1,16) = 15.90, p < 0.001$; Tables 5 and 6; Fig. 4C). As
293 done with Experiment 2, we used intracranial infusions of CNO to identify the vHPC

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

294 circuit that regulates fear generalization. Given that the vCA1 of the hippocampus has
295 direct connections with the BLA (Cenquizca and Swanson, 2007; Fanselow and Dong,
296 2010) and is thought to be crucial for conveying contextual information to the BLA
297 (Maren and Fanselow, 1995; Huff et al., 2016) we targeted vHPC projections
298 terminating in this region.

299 Mice with hM4D virus or EGFP control virus in the vHPC were context fear
300 conditioned; five minutes prior to testing all mice were given intracranial infusions of
301 CNO via guide cannulae into the BLA (Fig. 5A-C). Inactivation of hM4D terminals from
302 the vHPC in the BLA did not affect freezing in the training or novel context during the
303 recent test; both hM4D and EGFP groups displayed high freezing in the training context
304 and low freezing in the novel context (main effect of context $F(1,20) = 68.6$, $p < 0.001$;
305 Tables 5 and 6; Fig. 5F, left panel). When mice were tested 28 days after training,
306 EGFP-expressing mice displayed equivalent freezing levels in the training and novel
307 contexts (context x treatment interaction $F(1,24) = 4.34$, $p = 0.048$; Tables 5 and 6; Fig.
308 5F, right panel) – indicating generalized fear. hM4D inactivation of the vHPC terminals
309 in the BLA significantly reduced freezing in the novel context but did not alter freezing in
310 the training context. Again, this effect observed in hM4D-expressing mice was specific
311 to projections from the vHPC terminating in the BLA. HM4D mice with targets outside of
312 the BLA froze significantly more in the novel context at a remote time point than those
313 with correct target placement within the BLA even though they both expressed hM4D
314 and received intracranial CNO infusions while using a Mann-Whitney non-parametric t-
315 test ($p = 0.017$; Table 5; Fig. 5G). These findings indicate that activity of vHPC

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

316 projections – likely via vCA1 outputs (Cenquizca and Swanson, 2007; Cullen et al.,
317 2015) – to the BLA promote generalized fear, but only at a remote time point.
318 Are the vHPC projections to the BLA that support generalized fear restricted to
319 remote tests? As with Experiment 3, during the recent test EGFP F1 hybrids displayed
320 increased freezing in the novel context (Tables 5 and 6; Fig. 6E, left panel) – displaying
321 recent fear generalization. However, unlike the results from ACC-BLA circuit,
322 inactivation of vHPC terminals in the BLA at the recent time point did not reduce
323 freezing in the novel context nor the training context; reduced generalization was only
324 observed at the remote time point (remote context x treatment interaction $F(1,9) = 14.6$,
325 $p = 0.004$; Tables 5 and 6; Fig. 6E). Given that our previous tests in the novel context at
326 the recent time point had a floor effect, these experiments identified for the first time a
327 strictly time-dependent role of the vHPC-BLA circuit in supporting generalized
328 contextual fear. Conversely, the ACC governs generalization at both recent and remote
329 tests. Thus, our evidence supports a role for the ACC in supporting generalized fear
330 regardless of the passage of time, whereas the vHPC is engaged in support of
331 generalized fear only at a remote time point.

332 **Discussion**

333 Clinical studies implicate that the hyperreactive amygdala observed in people
334 with anxiety disorders may be due to an inhibitory dysregulation caused by a
335 malfunctioning anterior cingulate cortex and hippocampus (Gurvits et al., 1996;
336 Yamasue et al., 2003; Shin et al., 2006; Woodward et al., 2006; Asami et al., 2008;
337 Chen and Etkin, 2013; Greenberg et al., 2013). These studies are limited in making
338 causal conclusions about connectivity, as they associate hyperactive amygdala with

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

339 decreased volume and activity of the ACC or hippocampus. Here, we identified causal
340 relationships that fear to novel contexts is in fact regulated by the glutamatergic,
341 CamKII α -expressing projection neurons from the ACC and vHPC to the BLA but via
342 separate training and time-dependent mechanisms. The regulation of generalized fear
343 by projections from the ACC to the BLA is a time-independent effect that may depend
344 on the strength of the training based on our finding that 5-shock, not 3-shock, training
345 induced generalization within 24 hours. These findings support recent hypotheses that
346 propose that the ACC regulates generalized fear responses (Teyler and Rudy, 2007;
347 Winocur et al., 2007; Einarsson and Nader, 2012; Cullen et al., 2015), but not specific
348 fear responses. The time-independent mechanism of the ACC-BLA connection is in
349 contrast to what we observed with the vHPC. When we induced rapid generalization,
350 inactivation of projections from the vHPC to the BLA did not reduce freezing in the novel
351 context. Generalization was only eliminated when the vHPC-BLA circuit was inactivated
352 at a remote time point. Thus, the vHPC-BLA circuit plays a specific role in time-
353 *dependent* generalization of contextual fear. Inactivation of either region nor their
354 projections to the BLA did not alter freezing in the training context. These null findings
355 could not be due to masked effects from high levels of freezing, as freezing levels to the
356 training context varied among experiments. However, it may be possible that the lack of
357 effect observed in the training context is due to the unique aspects of each specific
358 context because we did not counterbalance training between contexts. We think this
359 explanation is unlikely because each context had corresponding, yet shifted, auditory,
360 visual, and olfactory cues.

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

361 We have consistently observed a role for the ACC that is specific to generalized
362 fear responding (Cullen et al., 2015), and this is supported by other recent work
363 (Einarsson et al., 2015). We note two prior studies which found that the ACC regulates
364 specific fear responses at remote time points after training (Frankland et al., 2004a;
365 Goshen et al., 2011). In one case, this discrepancy could be due to specific
366 methodological differences during testing; we performed local intracranial infusions of
367 CNO without anesthetizing mice prior to testing unlike the previous study (Frankland et
368 al., 2004a). In the other case, the authors performed tone-dependent fear training with
369 context as background and used multiple recall tests in the same context (Goshen et
370 al., 2011). Here, we used unsignaled shocks to train specifically for contextual fear and
371 mice were only tested in a single context once. This discrepancy provides evidence
372 that ACC regulation of fear responses is related to the strength – and type – of the fear
373 training. This was not the case for the role of the vHPC in generalized fear responding.

374 Currently, we do not fully understand the mechanisms underlying the
375 requirement of both the ACC and vHPC, at a remote time point, to promote
376 generalization – inactivation of either region had the same effect of reducing
377 generalization. The implications of these results suggest a time-dependent
378 reorganization of local circuits and/or projections to the BLA that make recruitment of
379 the vHPC required only at a remote time point. However, it is not clear whether the BLA
380 recruits the vHPC or the vHPC becomes inherently involved as a function of time.

381 Our study is not the first to demonstrate circuits involved in generalization.
382 Previously, Xu and Südhof (2013) proposed that the convergence of the ACC and
383 vHPC in the nucleus reunions was a “closed” circuit which encodes context-specific

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

384 fear, as they were able to induce generalization by inactivating this circuit (Xu and
385 Südhof, 2013). Little has been done investigating how these regions act to promote fear
386 responses after the initial training has consolidated successfully. Here, we identify
387 circuits governing generalization at the retrieval phase and provide support for
388 additional regions, such as the BLA, being involved in the processing of generalized
389 fear. Additionally, in the Xu and Südhof study, transgene expression encompassed
390 much of the dorsal medial prefrontal cortex (dmPFC), including the infralimbic and
391 prelimbic cortices leaving the identity of the exact sub-region contributing to
392 generalization unknown.

393 Few studies have investigated the neural circuit of the time-dependent nature of
394 generalization, which was the primary aim of our study. Rozeske et al. (2018) found
395 that activation of the projections from the dorsal medial prefrontal cortex (dmPFC),
396 including the infralimbic and prelimbic cortices, and the ACC, to the periaqueductal grey
397 (PAG) reduced contextual fear generalization, whereas inactivation of these projections
398 increased fear generalization (Rozeske et al., 2018). Much like Xu and Südhof (2013),
399 these studies were not able to differentiate among the three cortices within the dmPFC
400 – transgene expression encompassed most of the mPFC. Thus, the identity of the
401 precise subregion promoting fear generalization via projections to the PAG or via
402 additional projections was left unresolved. Here, we selectively targeted the anterior
403 cingulate cortex and its projections to the basolateral amygdala - no transgene
404 expression was observed in the infralimbic or prelimbic cortices - to identify region-
405 specific control over non-specific contextual fear.

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

406 For decades, the focus of identifying neural mechanisms of fear responding has
407 been the dorsal hippocampus (dHPC), and much of the current theory is based on
408 experiments within this region (Squire and Alvarez, 1995a; Frankland et al., 1998;
409 Teyler and Rudy, 2007; Winocur et al., 2007; Wiltgen et al., 2010; Hardt et al., 2013;
410 Winocur et al., 2013). Notably, the experiments described here, and our previous study
411 (Cullen et al., 2015), are the only studies to date examining the role of vHPC in
412 generalized fear responses. Generalized, remote fear responses require the vHPC;
413 whereas the dHPC is crucial for maintaining specific fear responses (Frankland et al.,
414 1998; Wiltgen et al., 2010; Winocur et al., 2013; Cullen et al., 2015). Over time, activity
415 of the vHPC and its projections to the BLA exert greater control over generalized fear
416 rather than maintaining control over specific fear, like the dHPC. Our vHPC results also
417 emphasize that there is a dissociation between the roles of the ventral and dorsal
418 hippocampus in the control of fear processing, an effect that has support from
419 neuroanatomical and connectivity studies (Fanselow and Dong, 2010), but limited
420 systems and behavioral support (Morris, 1981; Maren and Holt, 2004; Hunsaker and
421 Kesner, 2008). The present data also have important implications for predictions that
422 are made by theories about aging fear memories and interactions between the
423 hippocampus and cortical regions (Squire and Alvarez, 1995a; Teyler and Rudy, 2007;
424 Winocur et al., 2007; Hardt et al., 2013).

425 Systems consolidation hypothesizes that memories stored in the neocortex are
426 identical to those encoded by the hippocampus and does not address time-dependent
427 changes in memory specificity (Squire and Alvarez, 1995b). Our previous (Cullen et al.,
428 2015) and current findings challenge the view that neocortical stored memories are

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

429 identical to those stored in the hippocampus. In addition, our data suggest that aged
430 memories continue to be dependent on the hippocampus, albeit control shifts to the
431 ventral region. Another memory hypothesis suggests that specific memories are initially
432 dependent on the hippocampus and are transformed to schematic – generalized –
433 memories as they are stored in the neocortex, called the transformation hypothesis
434 (Winocur et al., 2007; 2013), which stems from Multiple Trace Theory (Nadel and
435 Moscovitch, 1997). In the transformation hypothesis, both the schematic memory and
436 the specific memory are continuously accessible; however, specific memories are
437 *always* dependent on the hippocampus whereas generalized memories are dependent
438 on the neocortex as they are transformed over time – independent of the hippocampus.
439 Therefore, at remote time points there can be two memory traces and either can be
440 accessed depending on the situational requirements.

441 Our data challenge the transformation hypothesis' notion that neocortical regions
442 control generalized memories as a function of the training-to-testing interval; our data
443 here show that memories may be immediately stored in a generalized state within the
444 ACC. Experiments employing immediate post-training inactivation of the ACC followed
445 by a test for generalization within a novel context are needed in order to confirm the
446 immediate storage hypothesis. Thus, our current data support the neocortex's
447 involvement in generalized memories, but not that generalized memories are
448 transformed over time, or that they are independent of the hippocampus.

449 Studies in full support of the transformation hypothesis thus far have not found
450 evidence for a functional dissociation between the dorsal and ventral hippocampus on
451 generalization (Winocur et al., 2007; 2009), suggesting that the hippocampus - as a

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

452 whole - is not required for generalized memory recall. Here, we discovered that rapidly
453 generalized memories do not require the vHPC, whereas remote generalized memories
454 do – showing an opposite role of that of the dHPC. Thus, our data, in combination with
455 recent findings (Lynch et al., 2017; Zhou et al., 2017), suggest that transformation of a
456 specific fear memory into a generalized form may actually involve a shift in control over
457 memory recall from the dHPC to the vHPC over time.

458 Utilizing chemogenetics, we reliably replicated the effects of the ACC and vHPC
459 regulating fear generalization via projections to the BLA; however, there have been
460 recent validity threats to the DREADD system. The DREADD activator – CNO – may
461 be reverse metabolized into clozapine with widespread effects and non-specific binding
462 of the DREADD receptor (MacLaren et al., 2016; Whissell et al., 2016; Gomez et al.,
463 2017; Manvich et al., 2018). To control for potential off-target effects of CNO, we fear
464 conditioned naïve mice and tested them 30 minutes after an injection of CNO or saline.
465 We found no effect of CNO on contextual fear or the generalization of contextual fear –
466 eliminating the potential confound of CNO specifically for our paradigm. Additionally,
467 intracranial infusions of CNO directly into the BLA replicated the systemic DREADD
468 inactivation findings, and mice expressing hM4D with targets outside the BLA displayed
469 normal freezing behavior in the novel context. Although one study reported off target
470 effects with lower a concentration of CNO when locally infused near the hypothalamus
471 (Stachniak et al., 2014), the small volume of the infusions used here (0.2 μ L), and the
472 lack of any behavioral effect when CNO was infused outside of the BLA strongly
473 suggests that our observed results were not due to off target effects of CNO – or its
474 reversal into clozapine – and that the effects were specific to inactivation of axonal

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

475 projections terminating in the BLA. A few reports suggest that CNO must be first
476 converted into clozapine in order to cross the blood brain barrier and exert its effects
477 (Bender et al., 1994; Gomez et al., 2017). Our intra-BLA infusions surpass the blood-
478 brain barrier, therefore CNO – not clozapine – in experiments 3, 4, 6, and 7 specifically
479 acted on the DREADD receptors in virally infused mice.

480 These findings help to uncover part of the neural connectome involved in both
481 specific and general fear responses, which is critical for understanding how humans and
482 non-humans alike express fearful responses in safe environments (pathological
483 generalization). Clinical research hypothesizes that reduced volume of the ACC and
484 hippocampus restricts normal inhibitory function on the amygdala leading to increased
485 fear responding (Gurvits et al., 1996; Schuff et al., 2001; Yamasue et al., 2003; Shin et
486 al., 2006; Woodward et al., 2006; Asami et al., 2008; Chen and Etkin, 2013; Greenberg
487 et al., 2013). Our findings confirm that the ACC and hippocampus, specifically the
488 vHPC, regulate fear in novel, or non-threatening, environments through their outputs to
489 the amygdala. Furthermore, these regions control generalization in functionally different
490 manners. The ACC time-independently controls generalization, whereas the vHPC
491 plays a strictly time-dependent role in regulating generalized fear. Clinically, these
492 findings implicate that hyperreactive amygdalae in patients with anxiety could be due to
493 an immediate, or potentially preexisting, increase in excitatory signaling from the ACC to
494 the BLA. Later recruitment of excitatory HPC inputs to the BLA may reinforce the
495 preexisting excitation from the ACC and thus contributing to perpetual anxiety. This
496 combination of increased excitatory drive could be the underlying mechanism of non-
497 specific fear responses associated with anxiety disorders in clinical populations.

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

498 **References**

499 Alonso J et al. (2004) Prevalence of mental disorders in Europe: results from the
500 European Study of the Epidemiology of Mental Disorders (ESEMeD) project. *Acta
501 Psychiatr Scand Suppl* 109:21–27.

502 Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the Lock to Fit
503 the Key to Create a Family of G Protein-Coupled Receptors Potently Activated by
504 an Inert Ligand. *Proc Natl Acad Sci USA* 104:5163–5168.

505 Asami T, Hayano F, Nakamura M, Yamasue H, Uehara K, Otsuka T, Roppongi T,
506 Niihashi N, Inoue T, Hirayasu Y (2008) Anterior cingulate cortex volume reduction in
507 patients with panic disorder. *Psychiatry and Clinical Neurosciences* 62:322–330.

508 Asok A, Kandel ER, Rayman JB (2018) The Neurobiology of Fear Generalization. *Front
509 Behav Neurosci* 12:329.

510 Bender D, Holschbach M, Stöcklin G (1994) Synthesis of n.c.a. carbon-11 labelled
511 clozapine and its major metabolite clozapine-N-oxide and comparison of their
512 biodistribution in mice. *Nucl Med Biol* 21:921–925.

513 Campeau S, Davis M (1995) Involvement of subcortical and cortical afferents to the
514 lateral nucleus of the amygdala in fear conditioning measured with fear- potentiated
515 startle in rats trained concurrently with auditory and visual conditioned stimuli. *The
516 Journal of Neuroscience* 15:2312–2327.

517 Cenquizca LA, Swanson LW (2007) Spatial organization of direct hippocampal field
518 CA1 axonal projections to the rest of the cerebral cortex. *Brain Res Rev* 56:1–26.

519 Chen AC, Etkin A (2013) Hippocampal network connectivity and activation differentiates
520 post-traumatic stress disorder from generalized anxiety disorder.
521 *Neuropsychopharmacology* 38:1889–1898.

522 Cullen PK, Gilman TL, Winiecki P, Riccio DC, Jasnow AM (2015) Activity of the anterior
523 cingulate cortex and ventral hippocampus underlie increases in contextual fear
524 generalization. *NEUROBIOLOGY OF LEARNING AND MEMORY* 124:19–27.

525 Do-Monte FH, Quiñones-Laracuente K, Quirk GJ (2016) A temporal shift in the circuits
526 mediating retrieval of fear memory. *Nature* 519:460–463.

527 Dymond S, Dunsmoor JE, Vervliet B, Roche B, Hermans D (2015) Fear Generalization
528 in Humans: Systematic Review and Implications for Anxiety Disorder Research.
529 *Behav Ther* 46:561–582.

530 Einarsson EÖ, Nader K (2012) Involvement of the anterior cingulate cortex in formation,
531 consolidation, and reconsolidation of recent and remote contextual fear memory.
532 *Learning & Memory* 19:449–452.

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

533 Einarsson EÖ, Pors J, Nader K (2015) Systems Reconsolidation Reveals a Selective
534 Role for the Anterior Cingulate Cortex in Generalized Contextual Fear Memory
535 Expression. *Neuropsychopharmacology* 40:480–487.

536 Fanselow MS, Dong H-W (2010) Are the dorsal and ventral hippocampus functionally
537 distinct structures? *Neuron* 65:7–19.

538 Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ (2004a) The involvement
539 of the anterior cingulate cortex in remote contextual fear memory. *Science* 304:881–
540 883.

541 Frankland PW, Cestari V, Filipkowski RK, McDonald RJ, Silva AJ (1998) The dorsal
542 hippocampus is essential for context discrimination but not for contextual
543 conditioning. *Behav Neurosci* 112:863–874.

544 Frankland PW, Josselyn SA, Anagnostaras SG, Kogan JH, Takahashi E, Silva AJ
545 (2004b) Consolidation of CS and US representations in associative fear
546 conditioning. *Hippocampus* 14:557–569.

547 Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, Ellis
548 RJ, Richie CT, Harvey BK, Dannals RF, Pomper MG, Bonci A, Michaelides M
549 (2017) Chemogenetics revealed: DREADD occupancy and activation via converted
550 clozapine. *Science* 357:503–507.

551 Goshen I, Brodsky M, Prakash R, Wallace J, Gradinariu V, Ramakrishnan C, Deisseroth
552 K (2011) Dynamics of retrieval strategies for remote memories. *Cell* 147:678–689.

553 Greenberg T, Carlson JM, Cha J, Hajcak G, Mujica-Parodi LR (2013) Ventromedial
554 prefrontal cortex reactivity is altered in generalized anxiety disorder during fear
555 generalization. *Depress Anxiety* 30:242–250.

556 Gurvits TV, Shenton ME, Hokama H, Ohta H, Lasko NB, Gilbertson MW, Orr SP, Kikinis
557 R, Jolesz FA, McCarley RW, Pitman RK (1996) Magnetic resonance imaging study
558 of hippocampal volume in chronic, combat-related posttraumatic stress disorder.
559 *Biological Psychiatry* 40:1091–1099.

560 Hardt O, Nader K, Nadel L (2013) Decay happens: the role of active forgetting in
561 memory. *Trends in Cognitive Sciences* 17:109–118.

562 Hefner K, Whittle N, Juhasz J, Norcross M, Karlsson R-M, Saksida LM, Bussey TJ,
563 Singewald N, Holmes A (2008) Impaired fear extinction learning and cortico-
564 amygdala circuit abnormalities in a common genetic mouse strain. *J Neurosci*
565 28:8074–8085.

566 Huff ML, Emmons EB, Narayanan NS, LaLumiere RT (2016) Basolateral amygdala
567 projections to ventral hippocampus modulate the consolidation of footshock, but not
568 contextual, learning in rats. *Learning & Memory* 23:51–60.

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

569 Hunsaker MR, Kesner RP (2008) Dissociations across the dorsal-ventral axis of CA3
570 and CA1 for encoding and retrieval of contextual and auditory-cued fear.
571 *NEUROBIOLOGY OF LEARNING AND MEMORY* 89:61–69.

572 Jasnow AM, Cullen PK, Riccio DC (2012) Remembering another aspect of forgetting.
573 *Front Psychol* 3:175.

574 Jasnow AM, Lynch JF III, Gilman TL, Riccio DC (2016) Perspectives on fear
575 generalization and its implications for emotional disorders. *Journal of Neuroscience*
576 *Research* 95:821–835.

577 Jendryka M, Palchaudhuri M, Ursu D, van der Veen B, Liss B, Kätsel D, Nissen W,
578 Pekcec A (2019) Pharmacokinetic and pharmacodynamic actions of clozapine-N-
579 oxide, clozapine, and compound 21 in DREADD-based chemogenetics in mice. *Sci
580 Rep* 9:4522.

581 Kessler RC, Petukhova M, Sampson NA, Zaslavsky AM, Wittchen H-U (2012) Twelve-
582 month and lifetime prevalence and lifetime morbid risk of anxiety and mood
583 disorders in the United States. *international journal of methods in psychiatric
584 research* 21:169–184.

585 Kim JJ, Fanselow MS (1992) Modality-specific retrograde amnesia of fear. *Science*
586 256:675–677.

587 Kim JJ, Rison RA, Fanselow MS (1993) Effects of amygdala, hippocampus, and
588 periaqueductal gray lesions on short- and long-term contextual fear. *Behav Neurosci*
589 107:1093–1098.

590 Lissek S, Powers AS, McClure EB, Phelps EA, Woldehawariat G, Grillon C, Pine DS
591 (2005) Classical fear conditioning in the anxiety disorders: a meta-analysis. *Behav
592 Res Ther* 43:1391–1424.

593 Lissek S, Rabin S, Heller RE, Lukenbaugh D, Geraci M, Pine DS, Grillon C (2010)
594 Overgeneralization of conditioned fear as a pathogenic marker of panic disorder.
595 *Am J Psychiatry* 167:47–55.

596 Lynch JF, Winiecki P, Gilman TL, Adkins JM, Jasnow AM (2017) Hippocampal
597 GABAB(1a) Receptors Constrain Generalized Contextual Fear.
598 *Neuropsychopharmacology* 42:914–924.

599 MacLaren DAA, Browne RW, Shaw JK, Krishnan Radhakrishnan S, Khare P, España
600 RA, Clark SD (2016) Clozapine N-Oxide Administration Produces Behavioral Effects
601 in Long-Evans Rats: Implications for Designing DREADD Experiments. *eNeuro* 3.

602 Mahler SV, Vazey EM, Beckley JT, Keistler CR, McGlinchey EM, Kaufling J, Wilson SP,
603 Deisseroth K, Woodward JJ, Aston-Jones G (2014) Designer receptors show role
604 for ventral pallidum input to ventral tegmental area in cocaine seeking. *Nat Neurosci*
605 17:577–585.

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

606 Manvich DF, Webster KA, Foster SL, Farrell MS, Ritchie JC, Porter JH, Weinshenker D
607 (2018) The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to
608 clozapine and produces clozapine-like interoceptive stimulus effects in rats and
609 mice. *Sci Rep* 8:3840.

610 Maren S, Aharonov G, Stote DL, Fanselow MS (1996) N-methyl-D-aspartate receptors
611 in the basolateral amygdala are required for both acquisition and expression of
612 conditional fear in rats. *Behav Neurosci* 110:1365–1374.

613 Maren S, Fanselow MS (1995) Synaptic plasticity in the basolateral amygdala induced
614 by hippocampal formation stimulation in vivo. *Journal of Neuroscience* 15:7548–
615 7564.

616 Maren S, Holt WG (2004) Hippocampus and Pavlovian fear conditioning in rats:
617 muscimol infusions into the ventral, but not dorsal, hippocampus impair the
618 acquisition of conditional freezing to an auditory conditional stimulus. *Behav
619 Neurosci* 118:97–110.

620 McCullough KM, Morrison FG, Ressler KJ (2016) Bridging the Gap: Towards a cell-type
621 specific understanding of neural circuits underlying fear behaviors.
622 *NEUROBIOLOGY OF LEARNING AND MEMORY* 135:27–39.

623 Morey RA, Dunsmoor JE, Haswell CC, Brown VM, Vora A, Weiner J, Stjepanovic D,
624 Wagner HR, VA Mid-Atlantic MIRECC Workgroup, LaBar KS (2015) Fear learning
625 circuitry is biased toward generalization of fear associations in posttraumatic stress
626 disorder. *Transl Psychiatry* 5:e700–e700.

627 Morozov A, Sukato D, Ito W (2011) Selective Suppression of Plasticity in Amygdala
628 Inputs from Temporal Association Cortex by the External Capsule. *Journal of
629 Neuroscience* 31:339–345.

630 Morris RGM (1981) Spatial localization does not require the presence of local cues.
631 *Learn Motiv* 12:239–260.

632 Nadel L, Moscovitch M (1997) Memory consolidation, retrograde amnesia and the
633 hippocampal complex. *Curr Opin Neurobiol* 7:217–227.

634 Rozeske RR, Jercog D, Karalis N, Chaudun F, Khoder S, Girard D, Winke N, Herry C
635 (2018) Prefrontal-Periaqueductal Gray-Projecting Neurons Mediate Context Fear
636 Discrimination. *Neuron* 97:898–910.e6.

637 Schafe GE, Doyère V, LeDoux JE (2005) Tracking the fear engram: the lateral
638 amygdala is an essential locus of fear memory storage. *J Neurosci* 25:10010–
639 10014.

640 Schuff N, Neylan TC, Lenoci MA, Du AT, Weiss DS, Marmar CR, Weiner MW (2001)
641 Decreased hippocampal N-acetylaspartate in the absence of atrophy in
642 posttraumatic stress disorder. *Biological Psychiatry* 50:952–959.

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

643 Scofield MD, Boger HA, Smith RJ, Li H, Haydon PG, Kalivas PW (2015) Gq-DREADD
644 Selectively Initiates Glial Glutamate Release and Inhibits Cue-induced Cocaine
645 Seeking. *Biological Psychiatry* 78:441–451.

646 Shin LM, Orr SP, Carson MA, Rauch SL, Macklin ML, Lasko NB, Peters PM, Metzger
647 LJ, Dougherty DD, Cannistraro PA, Alpert NM, Fischman AJ, Pitman RK (2004)
648 Regional cerebral blood flow in the amygdala and medial prefrontal cortex during
649 traumatic imagery in male and female Vietnam veterans with PTSD. *Arch Gen
650 Psychiatry* 61:168–176.

651 Shin LM, Rauch SL, Pitman RK (2006) Amygdala, medial prefrontal cortex, and
652 hippocampal function in PTSD. *Ann N Y Acad Sci* 1071:67–79.

653 Smith DR, Gallagher M, Stanton ME (2007) Genetic background differences and
654 nonassociative effects in mouse trace fear conditioning. *Learn Mem* 14:597–605.

655 Squire LR, Alvarez P (1995a) Retrograde amnesia and memory consolidation: a
656 neurobiological perspective. *Curr Opin Neurobiol* 5:169–177.

657 Squire LR, Alvarez P (1995b) Retrograde amnesia and memory consolidation: a
658 neurobiological perspective. *Curr Opin Neurobiol* 5:169–177.

659 Stachniak TJ, Ghosh A, Sternson SM (2014) Chemogenetic synaptic silencing of neural
660 circuits localizes a hypothalamus→midbrain pathway for feeding behavior. *Neuron*
661 82:797–808.

662 Tanaka KZ, Pevzner A, Hamidi AB, Nakazawa Y, Graham J, Wiltgen BJ (2014) Cortical
663 Representations Are Reinstated by the Hippocampus during Memory Retrieval.
664 *Neuron* 84:347–354.

665 Teyler TJ, Rudy JW (2007) The hippocampal indexing theory and episodic memory:
666 Updating the index. *Hippocampus* 17:1158–1169.

667 Vazey EM, Aston-Jones G (2014) Designer receptor manipulations reveal a role of the
668 locus coeruleus noradrenergic system in isoflurane general anesthesia.
669 *Proceedings of the National Academy of Sciences* 111:3859–3864.

670 Whissell PD, Tohyama S, Martin LJ (2016) The Use of DREADDs to Deconstruct
671 Behavior. *Front Genet* 7:70.

672 Wiltgen BJ, Silva AJ (2007) Memory for context becomes less specific with time. *Learn
673 Mem* 14:313–317.

674 Wiltgen BJ, Zhou M, Cai Y, Balaji J, Karlsson MG, Parivash SN, Li W, Silva AJ (2010)
675 The Hippocampus Plays a Selective Role in the Retrieval of Detailed Contextual
676 Memories. *Current Biology* 20:1336–1344.

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

677 Winocur G, Frankland PW, Sekeres M, Fogel S, Moscovitch M (2009) Changes in
678 context-specificity during memory reconsolidation: selective effects of hippocampal
679 lesions. *Learn Mem* 16:722–729.

680 Winocur G, Moscovitch M, Sekeres M (2007) Memory consolidation or transformation:
681 context manipulation and hippocampal representations of memory. *Nat Neurosci*
682 10:555–557.

683 Winocur G, Sekeres MJ, Binns MA, Moscovitch M (2013) Hippocampal lesions produce
684 both nongraded and temporally graded retrograde amnesia in the same rat.
685 *Hippocampus* 23:330–341.

686 Woodward SH, Kaloupek DG, Streeter CC, Martinez C, Schaer M, Eliez S (2006)
687 Decreased Anterior Cingulate Volume in Combat-Related PTSD. *Biological
688 Psychiatry* 59:582–587.

689 Xu W, Südhof TC (2013) A Neural Circuit for Memory Specificity and Generalization.
690 *Science* 339:1290–1295.

691 Yamasue H, Kasai K, Iwanami A, Ohtani T, Yamada H, Abe O, Kuroki N, Fukuda R,
692 Tochigi M, Furukawa S, Sadamatsu M, Sasaki T, Aoki S, Ohtomo K, Asukai N, Kato
693 N (2003) Voxel-based analysis of MRI reveals anterior cingulate gray-matter volume
694 reduction in posttraumatic stress disorder due to terrorism. *Proceedings of the
695 National Academy of Sciences* 100:9039–9043.

696 Zhou H, Xiong G-J, Jing L, Song N-N, Pu D-L, Tang X, He X-B, Xu F-Q, Huang J-F, Li
697 L-J, Richter-Levin G, Mao R-R, Zhou Q-X, Ding Y-Q, Xu L (2017) The
698 interhemispheric CA1 circuit governs rapid generalisation but not fear memory. *Nat
699 Commun* 8:2190.

700 Zola-Morgan SM, Squire LR (1990) The primate hippocampal formation: evidence for a
701 time-limited role in memory storage. *Science* 250:288–290.

702

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

703 **Financial Disclosure**

704 These experiments were funded in part by a Whitehall Foundation Grant (#2012-12-90).
705 The Whitehall Foundation did not have any role in the design, collection, analysis,
706 interpretation, writing, or manuscript submission process for the experiments and data
707 described herein.

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

708 **Figure Legends**

709 **Figure 1. Inactivation of the anterior cingulate cortex eliminates time-dependent**
710 **generalized context fear.**

711 **(A)** All mice underwent context fear conditioning which consisted five unsignaled
712 footshocks (1s, 1.0 mA), each separated by 90s, in the training context which
713 included the conditioning chamber with a polka-dot insert attached to the rear
714 Plexiglas wall, white noise (70db), dim illumination, and the stainless-steel grid
715 floors were cleaned with 70% ethanol. One day or 28 days after training mice
716 were either placed back in the training context or a distinct novel context which
717 included the conditioning chamber with a small exhaust fan, and flat brown
718 Plexiglas floors which were cleaned with 2% Quatricide. There was no visible
719 illumination (illuminated only with an infrared light), and no polka-dot wall insert.

720 **(B)** There was no effect of CNO alone on context dependent fear behavior. As a
721 CNO control experiment, naïve mice were context fear conditioned and given an
722 IP injection of CNO or saline 30 minutes prior to testing either 1 or 28 days after
723 training. Percent freezing levels of animals that received saline (filled symbols)
724 or CNO (open symbols) during recent (circles) and remote (squares) tests in the
725 training or neutral context were analyzed (\pm SEM). Two-way ANOVA identified a
726 significant main effect of context at the recent time point, $F_{(1,12)} = 96.40$, $p < 0.001$,
727 but not at the remote time point; mice froze significantly more in the training
728 context than the novel context at 1 but not 28 days after training. ***, significantly
729 different from animals tested in training context, $p < 0.001$.

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

730 **(C)** On the first day of the experimental procedures, pAAV-CaMKIIa-hM4D(Gi)-
731 mCherry virus (hM4D) or pAAV-CamKIIa-EGFP (EGFP) was bilaterally infused
732 into the anterior cingulate cortex (ACC). All behavioral tests were completed
733 seven weeks after viral infusions. For the recent test, mice were tested 1 day
734 after training,
735 **(D)** whereas mice tested at the remote time were tested 28 days after training. All
736 mice were given an IP injection of CNO 30 minutes prior to testing.
737 **(E)** Analysis of transgene expression in all hM4D infusions into the ACC for mice
738 tested with systemic injection of CNO. No expression was observed outside of
739 the ACC for systemic inactivation. Dark red: minimum spread observed and
740 included in analysis; red: representative spread observed; light red: maximum
741 spread observed and included in behavioral analysis.
742 **(F)** Representative image of pAAV-CaMKIIa-hM4D(Gi)-mCherry expression in the
743 ACC. Expression of mCherry was observed throughout the ACC and was typical
744 of a membrane bound fluorophore. White arrows indicate fiber tracts exiting the
745 ACC towards the corpus callosum.
746 **(G)** hM4D mice administered CNO froze significantly less than EGFP control mice in
747 the novel context only during the remote test, suggesting that inactivation of the
748 ACC eliminates generalized fear at a remote time point. Percent freezing levels
749 of EGFP (○) and hM4D (●) mice during recent (left panel) and remote (right
750 panel) tests in the training or neutral context were analyzed (\pm SEM). Two-way
751 ANOVA identified a significant main effect of context at the recent time point,
752 $F_{(1,16)} = 64.2$, $p < 0.001$, and at the remote time point $F_{(1,17)} = 52.3$, $p < .001$; mice

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

753 froze more in the training context than the novel context. However, there was a
754 significant context x treatment interaction only at the remote time point, $F_{(1,17)} =$
755 4.64, $p < 0.05$. * $p < 0.05$, ** $p < 0.01$, *** < 0.001 .

756 **(H)** Representative image of pAAV-CaMKIIa-hM4D(Gi)-mCherry expression in the
757 BLA in a mouse that had virus infused into the ACC. Robust expression of
758 mCherry was observed in the external capsule fibers entering the basolateral
759 amygdala.

760 **Figure 2. Inactivation of anterior cingulate cortex CamKII α projections in the**
761 **basolateral amygdala eliminates time-dependent generalized fear.**

762 **(A)** To identify if the ACC regulates fear generalization via CamKII α projections to
763 the BLA, pAAV-CaMKIIa-hM4D(Gi)-mCherry virus (hM4D) or pAAV-CamKIIa-
764 EGFP (EGFP) was bilaterally infused into the anterior cingulate cortex (ACC)
765 followed by cannulations targeting their axon terminals in the BLA.

766 **(B)** All behavioral tests were completed seven weeks after viral infusions.

767 Cannulations for the BLA were completed one week prior to behavioral training
768 procedures. Mice were tested 1 day or

769 **(C)** 28 days after training. All mice were given a local infusion of CNO into the BLA 5
770 minutes prior to testing to inactivate ACC CamKII α projections.

771 **(D)** Analysis of transgene expression in all hM4D mice tested with inactivation of BLA
772 terminals. One mouse was excluded from analysis due to significant hM4D
773 expression in the motor cortex. Dark red: minimum spread observed and
774 included in analysis; red: representative spread observed; light red: maximum
775 spread observed and included in behavioral analysis.

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

776 (E) Cannulation targets within the BLA; black dots indicate animals included in
777 behavioral analyses, red Xs indicate missed targets and used in a site specific
778 control analysis.

779 (F) hM4D mice with inactivated CamKII α projections from the ACC to the BLA froze
780 significantly less than EGFP mice in the novel context, but not in the training
781 context only at the remote test. Percent freezing levels of EGFP (○) and hM4D
782 (●) mice during recent (left panel) and remote (right panel) tests in the training or
783 neutral context 5 minutes after a microinfusion of CNO were analyzed (\pm SEM).
784 A two-way ANOVA identified a significant effect of context at the recent test $F_{(1,27)}$
785 = 47.1, $p < 0.001$, and remote test, $F_{(1,35)} = 15.6$, $p < 0.001$. As observed
786 previously, there was a significant interaction only at the remote test $F_{(1,35)} =$
787 6.71, $p < 0.05$. Thus, inactivation of ACC CamKII α projections to the BLA
788 eliminated time-dependent generalized fear.

789 (G) hM4D mice with extra-BLA infusions did not show a reduction in freezing in the
790 novel context. Percent freezing levels of hM4D mice tested in the neutral context
791 with missed BLA targeting compared to hM4D mice with specific targeting in the
792 BLA was analyzed (\pm SEM). A non-parametric Mann-Whitney t-test showed a
793 significant effect of CNO infusion target, $p < 0.05$. * $p < 0.05$, ** $p < 0.01$, *** $p <$
794 0.001.

795 **Figure 3. Inactivation of anterior cingulate cortex to basolateral amygdala**
796 **CamKII α projections eliminates time-independent generalized fear.**

797 (A) Hybrid B6S1 mice were tested for contextual fear after training with either 3, 1mA
798 shocks or 5, 1mA shocks. Percent freezing levels of 3 shock (○) and 5 shock (●)

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

799 trained mice in the training context were analyzed (\pm SEM). A two-way ANOVA
800 identified significant shock x context interaction $F_{(1,19)} = 5.42$, $p < 0.05$, showing
801 that 5-shock training, but not 3-shock training, significantly increased freezing in
802 the novel context at the 24h test.

803 **(B)** All behavioral tests were completed seven weeks after viral infusions.

804 Cannulations for the BLA were completed one week prior to behavioral training
805 procedures. In this experiment rapid generalization was induced using a hybrid
806 mouse line. Mice were tested once in each context at 1 day or

807 **(C)** 28 days after training with a 72-hour inter-test-interval. All mice were given a
808 local infusion of CNO into the BLA 5 minutes prior to testing to inactivate ACC
809 CamKII α projections.

810 **(D)** As done previously, mice were infused with the hM4D or EGFP virus into the
811 ACC with cannulations targeting the BLA. Viral spread analysis of all hM4D mice
812 tested using a within subject design with inactivation of BLA terminals identified
813 no expression outside of the ACC. Dark red: minimum spread observed and
814 included in analysis; red: representative spread observed; light red: maximum
815 spread observed and included in behavioral analysis.

816 **(E)** Cannulation targets were analyzed to correct placement into the BLA. No mice
817 had targets localized outside of the BLA in this experiment.

818 **(F)** At recent and remote tests, inactivating CamKII α projections from the ACC to the
819 BLA significantly reduced freezing to the novel context. Percent freezing levels
820 of EGFP (○) and hM4D (●) mice during within-subject recent (left panel) or
821 remote (right panel) tests in the training and neutral context 5 minutes after a

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

822 microinfusion of CNO were analyzed (\pm SEM). A two-way ANOVA identified
823 significant main effects of context at the recent $F_{(1,10)} = 64.8$, $p < 0.001$ and
824 remote tests $F_{(1,13)} = 17.9$, $p < 0.001$. However, for the first time, there was a
825 significant interaction at the recent $F_{(1,10)} = 5.35$, $p < 0.05$ and remote times $F_{(1,13)}$
826 = 4.93, $p < 0.05$, suggesting that ACC CamKII α projections to the BLA control a
827 time-independent form of generalization.

828 **Figure 4. Inactivation of the ventral hippocampus eliminates time-dependent**
829 **context fear generalization.**

830 **(A)** On the first day of the experimental procedures, pAAV-CaMKIIa-hM4D(Gi)-
831 mCherry virus (hM4D) or pAAV-CamKIIa-EGFP (EGFP) was bilaterally infused
832 into the ventral hippocampus (vHPC). All behavioral tests were completed seven
833 weeks after viral infusions. For the recent test, mice were tested 1 day after
834 training,

835 **(B)** whereas mice tested at the remote time were tested 28 days after training. All
836 mice were given an IP injection of CNO 30 minutes prior to testing.

837 **(C)** Analysis of transgene expression in hM4D infusions into the vHPC for mice
838 tested with systemic injection of CNO. No expression was observed outside of
839 the vHPC. Dark red: minimum spread observed and included in analysis; red:
840 representative spread observed; light red: maximum spread observed and
841 included in behavioral analysis.

842 **(D)** hM4D mice administered CNO froze significantly less than EGFP control mice in
843 the novel context only. Percent freezing levels of EGFP (○) and hM4D (●) mice
844 during recent (left panel) and remote (right panel) tests in the training or neutral

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

845 context were analyzed (\pm SEM). Two-way ANOVA identified a significant main
846 effect of context at the recent time point, $F_{(1,21)} = 70$, $p < 0.001$, and a the remote
847 time point $F_{(1,16)} = 40.9$, $p < .001$; mice froze more in the training context than the
848 novel context. However, there was a significant context x treatment interaction
849 only at the remote time point $F_{(1,16)} = 15.9$, $p < 0.01$. *** $p < 0.001$, suggesting
850 that the vHPC also regulates time-dependent generalized fear.

851 (E) Representative photomicrograph of pAAV-CaMKIIa-hM4D(Gi)-mCherry
852 expression in the vHPC. Robust transgene expression was observed throughout
853 the vHPC and typical of a membrane-bound fluorophore. Inset is 20x
854 magnification. White arrows indicate examples of somatic transgene expression.

855 **Figure 5. CamKII α projections from the ventral hippocampus to the basolateral
856 amygdala regulate time-dependent generalized.**

857 (A) To identify if the vHPC regulates fear generalization via its CamKII α projections
858 to the BLA, pAAV-CaMKIIa-hM4D(Gi)-mCherry virus (hM4D) or pAAV-CamKIIa-
859 EGFP (EGFP) was bilaterally infused at into the vHPC followed by cannulations
860 targeting the BLA.

861 (B) All behavioral tests were completed seven weeks after viral infusions.
862 Cannulations for the BLA were completed one week prior to behavioral training
863 procedures. Mice were tested 1 day or

864 (C) 28 days after training. All mice were given a local infusion of CNO into the BLA 5
865 minutes prior to testing.

866 (D) Viral spread analysis of all hM4D mice tested with inactivation of BLA terminals.
867 Dark red: minimum spread observed and included in analysis; red: representative

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

868 spread observed; light red: maximum spread observed and included in
869 behavioral analysis.

870 **(E)** Cannulation targets within the BLA; black dots indicate animals included in
871 behavioral analyses, red Xs indicate missed targets and used in a site specific
872 control analysis.

873 **(F)** hM4D mice with inactivated CamKII α projections from the vHPC to the BLA froze
874 significantly less than EGFP mice in the novel context, but not in the training
875 context. Percent freezing levels of EGFP (○) and hM4D (●) mice during recent
876 (left panel) and remote (right panel) tests in the training or neutral context 5
877 minutes after a microinfusion of CNO were analyzed (\pm SEM). A two-way
878 ANOVA identified a significant effect of context at the recent test $F_{(1,20)} = 68.6$, $p <$
879 0.001, and remote test, $F_{(1,24)} = 13.3$ $p < 0.01$. As observed previously, there was
880 a significant interaction only at the remote test $F_{(1,24)} = 4.34$, $p < 0.05$.

881 **(G)** hM4D mice with off-target infusions did not show a reduction in freezing in the
882 novel context. Percent freezing levels of hM4D mice tested in the neutral context
883 with missed BLA targeting compared to hM4D mice with specific targeting in the
884 BLA was analyzed (\pm SEM). A non-parametric Mann-Whitney t-test showed a
885 significant effect of CNO infusion target, $p < 0.05$. * $p < 0.05$, ** $p < 0.01$, *** $p <$
886 0.001.

887 **Figure 6. The ventral hippocampus coordinates time-dependent generalization.**

888 **(A)** As done previously, mice were infused with hM4D or EGFP virus into the vHPC
889 with cannulations targeting the BLA. Viral spread analysis of all hM4D mice
890 tested using a within subject design with inactivation of BLA terminals identified

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

891 no expression outside of the vHPC. Dark red: minimum spread observed and
892 included in analysis; red: representative spread observed; light red: maximum
893 spread observed and included in behavioral analysis.

894 **(B)** Cannulation targets were again analyzed to correct placement into the BLA.

895 There were no missed targets outside of the BLA in this experiment.

896 **(C)** All behavioral tests were completed seven weeks after viral infusions.

897 Cannulations for the BLA were completed one week prior to behavioral training
898 procedures. In this experiment rapid generalization was induced using a hybrid
899 mouse line. Mice were tested once in each context at 1 day or

900 **(D)** 28 days after training with a 72-hour inter-test-interval. All mice were given a
901 microinfusion of CNO into the BLA 5 minutes prior to testing.

902 **(E)** Inactivating CamKII α projections from the vHPC to the BLA significantly reduced
903 freezing to the novel context only at the remote test. These data suggest that
904 glutamatergic projections from the vHPC to the BLA selectively control time-
905 dependent generalized fear. Percent freezing levels of EGFP (○) and hM4D (●)
906 mice during within-subject recent (left panel) or remote (right panel) tests in the
907 training and neutral context 5 minutes after a local infusion of CNO were
908 analyzed (\pm SEM). A two-way ANOVA identified significant main effects of
909 context at the recent $F_{(1,13)} = 19$, $p < 0.001$ and remote tests $F_{(1,9)} = 80.9$, $p <$
910 0.001. After induced generalization, there was a significant interaction only at the
911 remote test $F_{(1,9)} = 14.6$, $p < 0.01$. *** $p < 0.001$.

913 **Table 1.** Clozapine-N-Oxide & Hybrid B6S1 Behavior Statistical Summary

Mouse Strain	Manipulation	Statistical Test	Test Delay	Comparison	F/t Statistic	DF	% Total Variance	P	*	np ²	Effect Size	Power	Figure	
C57BL/6	CNO vs Saline	Two-Way ANOVA	1 D	Context x Treatment	2.30	1,12	2.08	0.155	ns	0.160	0.43	0.36	1B	
				Context	96.40	1,12	87.10	<0.001	***	0.889	2.85	1.00		
				Drug Treatment	0.03	1,12	0.02	0.873	ns	0.002	0.05	0.05		
	Three vs Five Shock		28 D	Context x Treatment	0.32	1,11	2.23	0.584	ns	0.028	0.16	0.09	1B	
				Context	2.61	1,11	18.7	0.131	ns	0.195	0.49	0.41		
				Drug Treatment	0.80	1,11	0.606	0.774	ns	0.007	0.08	0.06		
				Context x Treatment	5.42	1,19	4.01	0.03	*	0.222	0.53	0.68		
			1 D	Context	90.60	1,19	67.10	<0.001	***	0.821	2.18	1.00		
				Shock Treatment	16.10	1,19	11.90	<0.001	***	0.78	0.29	0.26		

914

915 **Table 2.** Clozapine-N-Oxide & Hybrid B6S1 Behavior significant post-hoc comparisons summary.

Statistical Test	Test Delay	Significant Post-Hoc Comparisons		N1	N2	t	DF	P	*	Figure	
		Context:Treatment									
Pos-Hoc Comparison	1 D	Training:Saline vs. Novel:Saline		76.3	29.3	4	4	4.2	4	<0.001	***
		Training:Saline vs. Novel:CNO		76.3	21.7	4	4	4.8	4	<0.001	***
		Training:CNO vs. Novel:Saline		85.8	29.3	4	4	5	4	<0.001	***
		Training:CNO vs. Novel:CNO		85.8	21.7	4	4	5.7	4	<0.001	***
Pos-Hoc Comparison	1 D	Training:3-Shock vs. Novel:3-Shock		79.5	16.6	7	6	9	19	<0.001	***
		Training:3-Shock vs. Novel:5-Shock		79.5	50.2	7	5	4	19	<0.001	***
		Training:5-Shock vs. Novel:3-Shock		88.4	16.6	5	6	9.4	19	<0.001	***
		Training:5-Shock vs. Novel:5-Shock		88.4	50.2	5	5	4.8	19	<0.001	***
		Novel:3-Shock vs. Novel:5-Shock		16.6	50.2	6	5	4.4	19	<0.001	***

916

ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

917 **Table 3.** Anterior Cingulate Cortex Statistical Summary

Mouse Strain	Inactivation	Statistical Test	Test Delay	Comparison	F/t Statistic	DF	% Total Variance	P	*	np ²	Effect Size	Power	Figure	
C57BL/6	Systemic	Two-Way ANOVA		Context x Treatment	0.02	1,16	0.03	0.886	-	0.001	0.04	0.05	1G	
			1 D	Context	64.20	1,16	78.80	<0.001	***	0.801	2.00	1.00		
				Viral Treatment	0.08	1,16	0.10	0.776	-	0.005	0.07	0.06		
			28 D	Context	4.64	1,17	5.94	0.046	*	0.230	0.52	0.62		
				Viral Treatment	52.30	1,17	66.9	<0.001	***	0.770	1.75	1.00		
	BLA Terminals			Context x Treatment	4.34	1,17	5.55	0.053	-	0.219	0.50	0.59	2F	
			1D	Context	0.32	1,27	0.42	0.578	-	0.012	0.10	0.09		
				Viral Treatment	47.10	1,27	63.00	<0.001	***	0.636	1.32	0.99		
			28 D	Context	6.71	1,35	10.3	0.014	*	0.161	0.44	0.76		
				Viral Treatment	15.6	1,35	23.9	<0.001	***	0.308	0.67	0.98		
C57BL/6 x 129S1vmJ		Mann-Whitney Test	28 D	Target Location				0.019	*	-	8.93	1.00	2G	
Repeated Measures Two-Way ANOVA			Context x Treatment	5.35	1,10	5.04	0.043	*	0.333	0.71	0.97	3E		
		1D	Context	64.8	1,10	61	<0.001	***	0.858	2.46	1.00			
			Viral Treatment	14.3	1,10	14.4	0.004	**	0.588	1.20	0.99			
		28D	Context	4.93	1,13	6.28	0.045	*	0.128	0.39	0.71			
			Viral Treatment	17.9	1,13	22.8	<0.001	***	0.348	0.73	0.99			
				3.08	1,13	10.1	0.103	-	0.192	0.49	0.89			

918

919 **Table 4.** Anterior cingulate cortex significant post-hoc comparisons summary.

Mouse Strain	Inactivation	Statistical Test	Test Delay	Significant Post-Hoc Comparisons Context:Treatment	Mean 1	Mean 2	N1	N2	t	DF	P	*	Figure
C57BL/6	Systemic	Two-Way ANOVA	1 D	Training:hM4D vs. Novel:hM4D	55.4	1.79	5	5	5.83	16	<0.001	***	1G
				Training:hM4D vs. Novel:EGFP	55.4	4.65	5	4	5.2	16	<0.001	***	
				Training:EGFP vs. Novel:hM4D	56.3	1.79	6	5	6.19	16	<0.001	***	
				Training:EGFP vs. Novel:EGFP	56.3	4.65	6	4	5.51	16	<0.001	***	
			28 D	Training:hM4D vs. Novel:hM4D	70.1	11.9	6	5	6.78	17	<0.001	***	1G
				Training:hM4D vs. Novel:EGFP	70.1	38.2	6	5	3.72	17	0.002	**	
	BLA Terminals	Repeated Measures Two-Way ANOVA	1D	Training:EGFP vs. Novel:hM4D	69.7	11.9	5	5	6.45	17	<0.001	***	2F
				Training:EGFP vs. Novel:EGFP	69.7	38.2	5	5	3.51	17	0.003	**	
				Novel:hM4D vs. Novel:EGFP	11.9	38.2	5	5	2.93	17	0.009	**	
				Training:hM4D vs. Novel:hM4D	41.9	8.26	7	8	4.38	27	<0.001	***	
			28 D	Training:hM4D vs. Novel:EGFP	41.9	4.34	7	8	4.89	27	<0.001	***	2F
				Training:EGFP vs. Novel:hM4D	44	8.26	8	8	4.82	27	<0.001	***	
				Training:EGFP vs. Novel:EGFP	44	4.34	8	8	5.34	27	<0.001	***	
C57BL/6 x 129S1vmJ			1D	Training:hM4D vs. Novel:hM4D	42	4.13	10	13	5.08	35	<0.001	***	3E
				Training:EGFP vs. Novel:hM4D	35.7	4.13	8	13	3.96	35	<0.001	***	
			28D	Novel:hM4D vs. Novel:EGFP	4.13	27.8	13	8	2.97	35	0.005	**	
				hM4D: Training vs. Novel	71.3	16.7	6	6	7.33	10	<0.001	***	
				EGFP: Training vs. Novel	79.7	49.5	6	6	4.05	10	0.002	**	
				Novel: hM4D vs. EGFP	16.7	49.5	6	6	4.32	20	<0.001	***	
				hM4D: Training vs. Novel	67.7	37.6	8	8	4.72	13	<0.001	***	
				Novel: hM4D vs. EGFP	37.6	61.1	8	7	2.66	26	0.013	*	

920

921

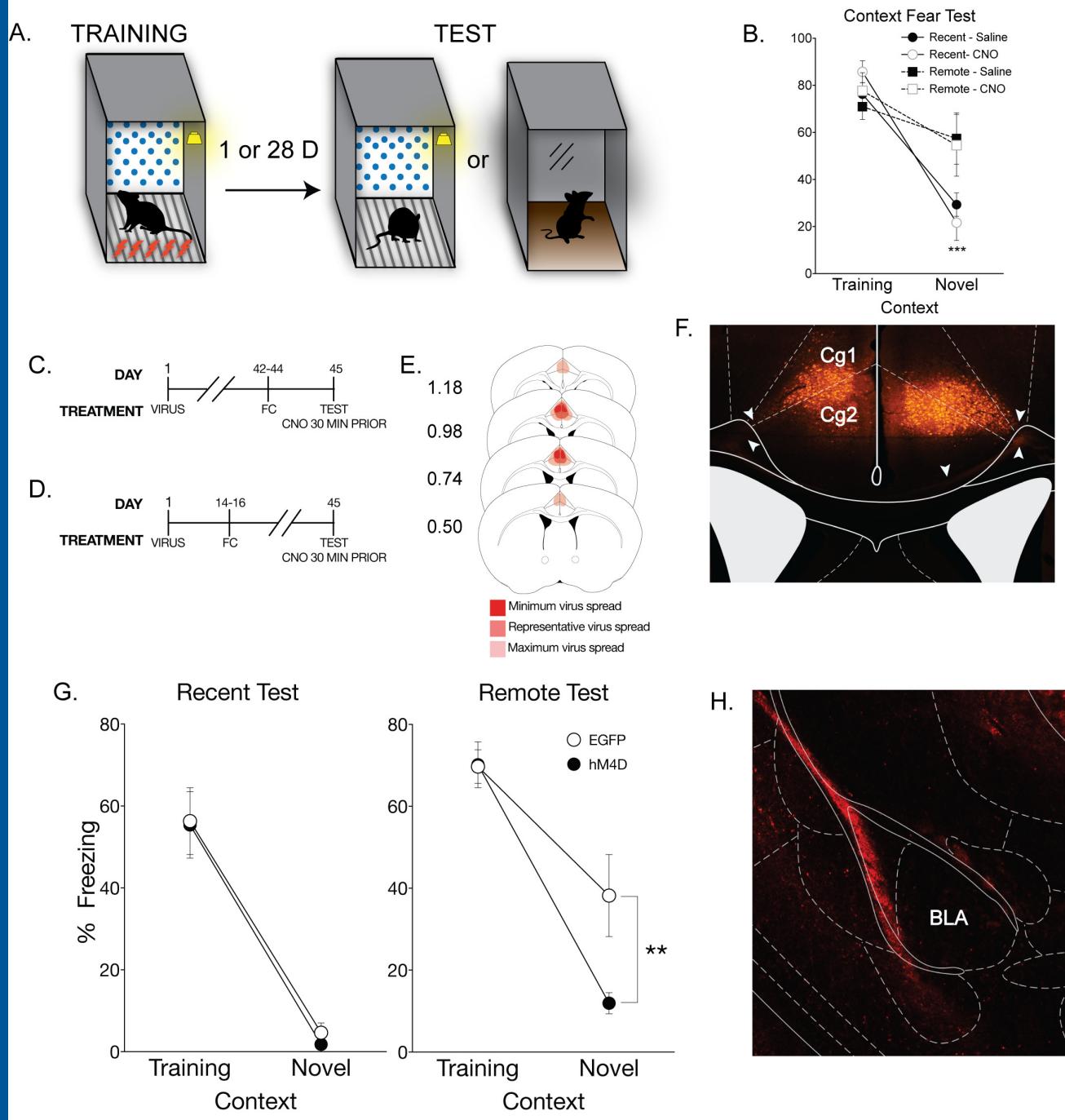
ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION

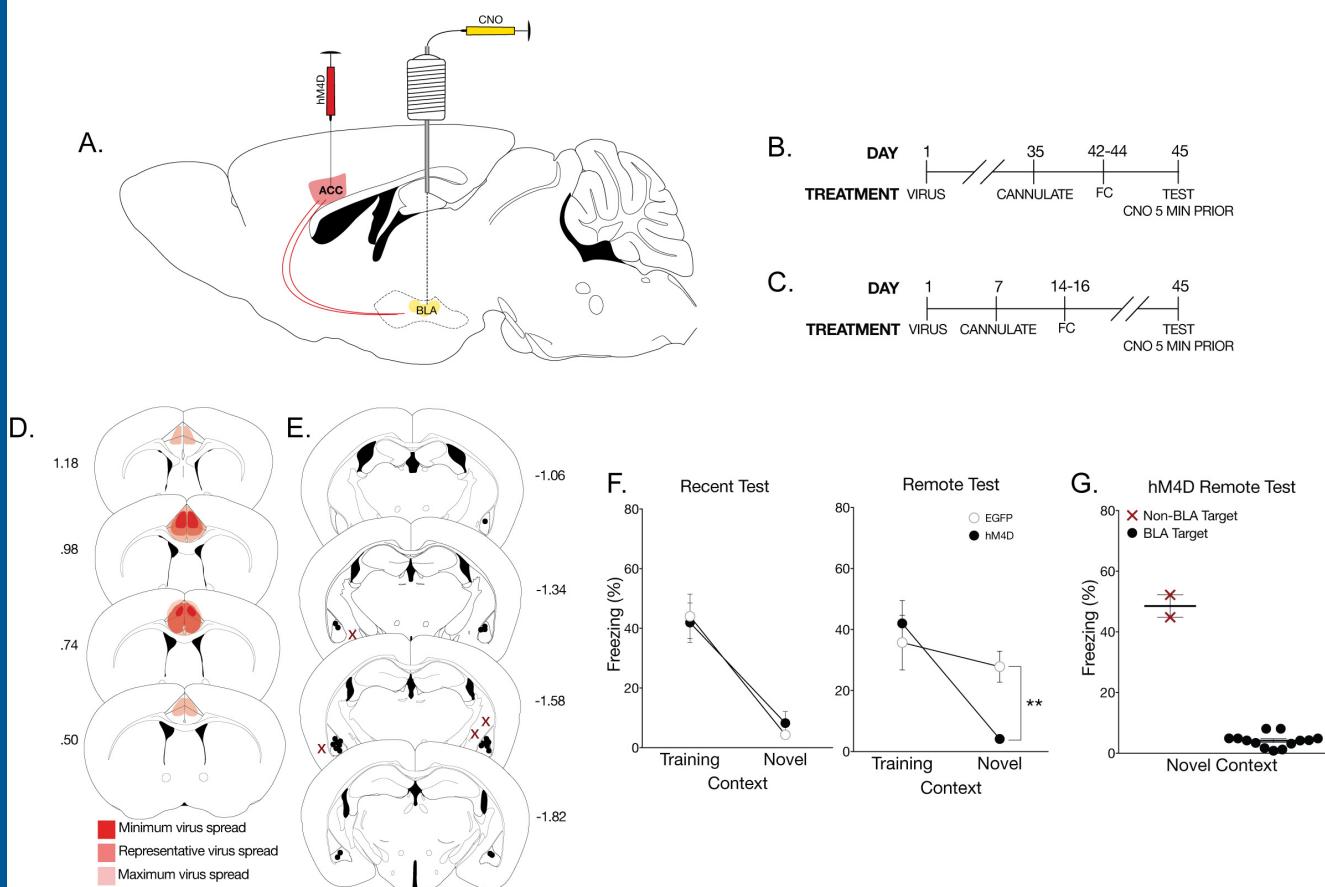
922 **Table 5.** Ventral hippocampus cortex statistical analysis summary.

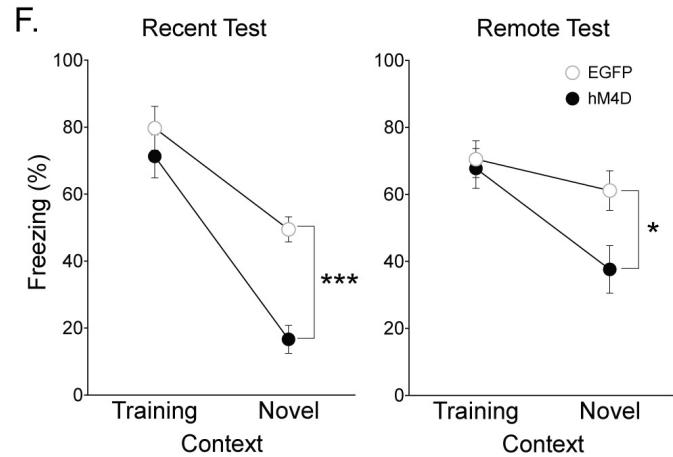
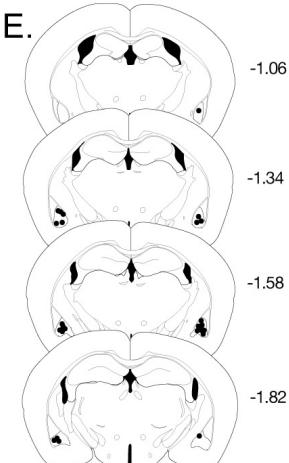
Mouse Strain	Inactivation	Statistical Test	est Dela	Comparison	F/t Statistic	DF	% Total Variance	P	*	np ²	Effect Size	Power	Figure
C57BL/6	Systemic	Two-Way ANOVA		Context x Treatment	0.36	1,21	0.40	0.553	-	0.13	0.09		4F
				1 D Context	70.00	1,21	76.20	<.001	***	1.82	1.00		
				Viral Treatment	0.07	1,21	0.08	0.79	-	0.06	0.06		
				Context x Treatment	15.90	1,16	20.2	0.001	**	1.00	0.97		
				28 D Context	40.90	1,16	52.1	<.001	***	1.60	0.99		
				Viral Treatment	5.79	1,16	7.38	0.029	*	0.60	0.71		
				Context x Treatment	0.36	1,20	0.39	0.556	-	0.13	0.10		
				1D Context	68.60	1,20	75.10	<.001	***	1.85	1.00		
				Viral Treatment	1.05	1,20	1.15	0.318	-	0.22	0.19		
				Context x Treatment	4.34	1,24	10.5	0.048	*	0.43	0.51		
				28 D Context	13.3	1,24	32.2	0.001	**	0.76	0.94		
				Viral Treatment	1.21	1,24	2.92	0.283	ns	0.22	0.18		
	BLA Terminals	Mann-Whitney Test	28 D Target Location					0.017	*	4.02	0.99		5G
		Repeated Measures Two-Way ANOVA		Context x Treatment	0.348	1,13	0.798	0.565	ns	0.16	0.19		6E
				1D Context	19	1,13	43.5	<.001	***	1.21	1.00		
				Viral Treatment	0.952	1,13	1.71	0.347	ns	0.24	0.35		
				Context x Treatment	14.6	1,9	12.4	0.004	**	1.17	0.99		
				28D Context	80.9	1,9	68.6	<.001	***	2.75	1.00		
				Viral Treatment	6.95	1,9	7.02	0.027	*	0.88	0.99		

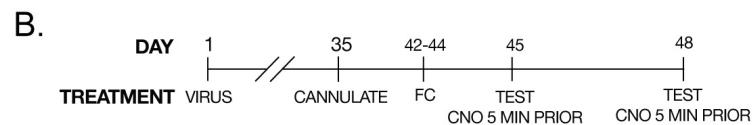
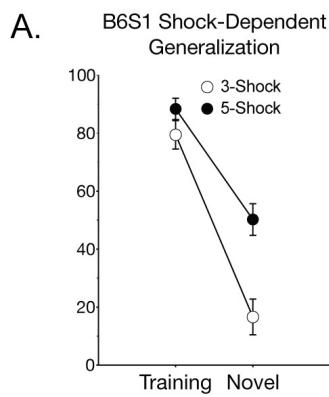
923

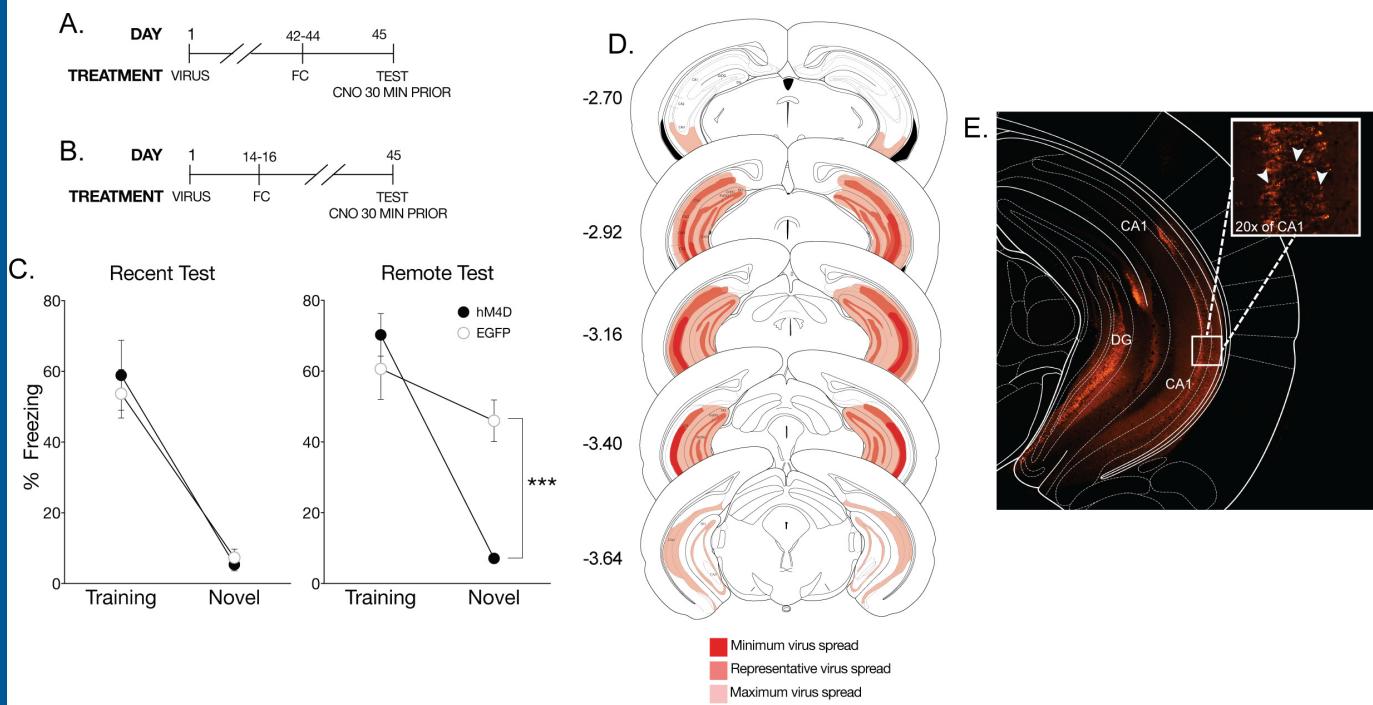
924


ACC AND VHPC INPUTS TO BLA IN FEAR GENERALIZATION


925 **Table 6.** Ventral hippocampus significant post-hoc comparisons summary.




Mouse Strain	Inactivation	Statistical Test	Test Delay	Significant Post-Hoc Comparisons Context:Treatment	Mean 1	Mean 2	N1	N2	t	DF	P	*	Figure
C57BL/6	Systemic	Two-Way ANOVA	1 D	Training:hM4D vs. Novel:hM4D	58.9	5.36	6	7	6.5	21	<0.001	***	4F
				Training:hM4D vs. Novel:EGFP	58.9	7.35	6	6	6	21	<0.001	***	
				Training:EGFP vs. Novel:hM4D	53.7	5.36	6	7	5.8	21	<0.001	***	
				Training:EGFP vs. Novel:EGFP	53.7	7.35	6	6	5.4	21	<0.001	***	
			28 D	Training:hM4D vs. Novel:hM4D	70.2	7.1	5	5	7.3	16	<0.001	***	4F
				Training:hM4D vs. Novel:EGFP	70.2	4.6	5	5	2.8	16	0.012	*	
				Training:EGFP vs. Novel:hM4D	60.7	7.1	5	5	6.2	16	<0.001	***	
	BLA Terminals	Repeated Measures Two-Way ANOVA	1D	Novel:hM4D vs. Novel:EGFP	7.1	4.6	5	5	4.5	16	<0.001	***	5F
				Training:hM4D vs. Novel:hM4D	51.6	4.57	6	5	5.2	20	<0.001	***	
				Training:hM4D vs. Novel:EGFP	51.6	7.16	6	6	5.2	20	<0.001	***	
			28 D	Training:EGFP vs. Novel:hM4D	61.6	4.57	7	5	6.5	20	<0.001	***	5F
				Training:EGFP vs. Novel:EGFP	61.6	7.16	7	6	6.6	20	<0.001	***	
				Training:hM4D vs. Novel:hM4D	58.7	7.9	7	6	3.9	24	<0.001	***	
C57BL/6 x 129S1vmJ			1D	Training:EGFP vs. Novel:hM4D	50	7.9	7	6	3.2	24	0.003	**	6E
				Novel:hM4D vs. Novel:EGFP	7.9	36.1	6	8	2.2	24	0.035	*	
			28D	hM4D: Training vs. Novel	62.8	40.6	7	7	2.6	13	0.023	*	
				EGFP: Training vs. Novel	71.3	42.2	8	8	3.6	13	0.003	**	
				hM4D: Training vs. Novel	80.8	14.5	5	5	8.7	9	<0.001	***	


926

